

HS-ESS2 Earth's Systems

HS-ESS2 Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-1. Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.]

HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes

in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-6)
- Use a model to provide mechanistic accounts of phenomena. (HS-ESS2-4)

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-ESS2-5)

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

 Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-2)

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System

 Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt of the planet's axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth.
These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.A: Earth Materials and Systems

- Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1),(HS-ESS2-2)
- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth's interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)
- The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun's energy output or Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. (HS-ESS2-4)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

 The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)

Crosscutting Concepts

Cause and Effect

 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS2-4)

Energy and Matter

- The total amount of energy and matter in closed systems is conserved. (HS-ESS2-6)
- Energy drives the cycling of matter within and between systems. (HS-ESS2-3)

Structure and Function

 The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials. (HS-ESS2-5)

Stability and Change

- Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS2-7)
- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS2-1)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS2-2)

Connections to Engineering, Technology, and Applications of Science

Engaging in Argument from Evidence

Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

· Construct an oral and written argument or counterarguments based on data and evidence. (HS-ESS2-7)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

- Science knowledge is based on empirical evidence. (HS-ESS2-3)
- Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-FSS2-3)
- Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-

Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth's crust. (ESS2.B Grade 8 GBE) (HS-ESS2-1)

ESS2.C: The Roles of Water in Earth's Surface Processes

The abundance of liquid water on Earth's surface and its unique combination of physical and chemical properties are central to the planet's dynamics. These properties include water's exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. (HS-FSS2-5)

ESS2.D: Weather and Climate

- The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space. (HS-ESS2-2), (HS-ESS2-4)
- Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-6), (HS-ESS2-7)
- Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6),(HS-ESS2-4)

ESS2.E: Biogeology

 The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth's surface and the life that exists on it. (HS-ESS2-7)

PS4.A: Wave Properties

Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (secondary to HS-ESS2-3)

Interdependence of Science, Engineering, and Technology

Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS2-3)

Influence of Engineering, Technology, and Science on Society and the Natural

New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS2-2)

Connections to other DCIs in this grade-band: HS.PS1.A (HS-ESS2-5), (HS-ESS2-6); HS.PS1.B (HS-ESS2-5), (HS-ESS2-6); HS.PS2.B (HS-ESS2-1), (HS-ESS2-1), (HS-ESS2-3); HS.PS3.A (HS-ESS2-6); HS.PS3.B (HS-ESS2-6); HS.PS3.B (HS-ESS2-1), (HS-ESS2-4); HS.PS3.B (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-5); HS.PS3.D (HS-ESS2-3), (HS-ESS2-6); HS.PS4.B (HS-ESS2-2); HS.LS1.C (HS-ESS2-6); HS.LS2.A (HS-ESS2-7); HS.LS2.B (HS-ESS2-2),(HS-ESS2-6); HS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.C (HS-ESS2-7); HS.LS4.D (HS-ESS2-7); HS.LS4.B ESS2-2), (HS-ESS2-7); HS.ESS1.C (HS-ESS2-4); HS.ESS3.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6); HS.ESS3.D (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6)

Articulation of DCIs across grade-bands: MS.PS1.A (HS-ESS2-3), (HS-ESS2-5), (HS-ESS2-6); MS.PS1.B (HS-ESS2-3); MS.PS2.B (HS-ESS2-1), (HS-ESS2-3); MS.PS3.A (HS-ESS2-3); MS.PS3.A (HS-ESS2-3); MS.PS3.B 3), (HS-ESS2-4); MS.PS3.B (HS-ESS2-3), (HS-ESS2-4); MS.PS3.D (HS-ESS2-4), (HS-ESS2-4), (HS-ESS2-4); MS.PS3.D (HS-ESS2-4), (HS-ESS2-4), (HS-ESS2-4); MS.PS3.D (HS-ESS2-4); MS.PS3.D (HS-ESS2-4), (HS-ESS2-4); MS.PS3.D (HS-ES (HS-ESS2-4); MS.LS2.A (HS-ESS2-7); MS.LS2.B (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-6); MS.LS2.C (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-7); MS.LS4.A (HS-ESS2-7); MS.LS4.B (HS-ESS2-7); MS.LS4.C (HS-ESS2-2),(HS-ESS2-7); MS.ESS1.C (HS-ESS2-1),(HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-3),(HS-ESS2-4), 5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-5),(HS-ESS2-5),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-1),(HS-ESS2 6), (HS-ESS2-7); MS.ESS2.D (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-4), (HS-ESS2-5); MS.ESS3.C (HS-ESS2-4), (HS-ESS2-6), (HS-ESS2-6), (HS-ESS2-7); MS.ESS3.D (HS-ESS2-2), (HS-ESS2-8), (HS-ESS2-8 ESS2-4), (HS-ESS2-6)

Common Core State Standards Connections:

ELA/Literacy -
RST.11-12.1

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or

inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)

RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in

simpler but still accurate terms. (HS-ESS2-2)

WHST.9-12.1 Write arguments focused on discipline-specific content. (HS-ESS2-7)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)

Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings,

reasoning, and evidence and to add interest. (HS-ESS2-1), (HS-ESS2-3), (HS-ESS2-4)

Mathematics -MP.2

SL.11-12.5

Reason abstractly and quantitatively. (HS-ESS2-1), (HS-ESS2-2), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6)

Model with mathematics. (HS-ESS2-1), (HS-ESS2-3), (HS-ESS2-4), (HS-ESS2-6) MP.4

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and

interpret the scale and the origin in graphs and data displays. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-4),(HS-ESS2-3),(HS-ES

ESS2-5),(HS-ESS2-6)